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Abstract 

As result replicability is essential to science and difficult to achieve through external 

replicability, the present paper notes the insufficiency of null hypothesis statistical significance 

testing (NHSST) and explains the bootstrap as a plausible alternative, with a heuristic example to 

illustrate the bootstrap method.  The bootstrap relies on resampling with replacement from the 

original sample to generate a sampling distribution of bootstrap samples.  An estimated standard 

error can be derived from the bootstrap sampling distribution to determine the replicability of 

statistical results in the original sample. 
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Using the Descriptive Bootstrap to Evaluate Result Replicability (Because Statistical 

Significance Doesn’t) 

 Result replicability “is almost universally accepted as the most important criterion of 

genuine scientific knowledge” (Rosenthal & Rosnow, 1984, p. 9).  It is paramount that scientists 

have replicable findings; otherwise their research cannot be relied upon and built on by others.  

Thompson (2006) illustrates the importance of replicability with the story of cold fusion from 

1989, when two scientists reported the possibility of using cold fusion to generate cheap, almost 

unlimited, clean energy.  After they held a press conference announcing their finding, essentially 

no one was able to replicate their results.  Imagine the embarrassment that necessarily ensues 

from publishing results that are not replicable!  Thompson (1993, p. 368) stated that an emphasis 

on replicability “is compatible with the basic purpose of science: isolating conclusions that 

replicate under stated conditions.” 

 The most straightforward type of replicability is external replicability.  This is achieved 

by conducting the same study with a different sample and finding whether results confirm the 

original results.  However, generating additional samples for external replicability means more 

time and more money must be spent.  As a result, many scientists mistakenly turn to null 

hypothesis statistical significance testing (NHSST) as evidence of replicability, for reasons that 

will shortly be explained.  Fortuitously, another kind of replicability exists.  Internal replicability 

can be verified through several statistical methods, including cross-validation, the jackknife, and 

the bootstrap.  The bootstrap generates additional samples from an original sample and uses the 

generated samples to estimate result replicability.  The present paper first explores some of the 

mistakes in thinking that NHSST can be used to evaluate result replicability, while focusing 

primarily on explaining the concepts and methodology of using the bootstrap method. 
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The Insufficiency of Statistical Significance Testing 

 Statistical significance testing is a method of making inferences about a sample from a 

population.  For a scientist interested in researching a question, the population is everyone for 

whom the question is applicable.  The answer to a question about the population is called a 

parameter.  However, collecting information from every single person in a population is usually 

infeasible, besides being tedious, costly, and time-engulfing.  So, instead, most scientists collect 

information only from some of the people in the population, which is called a sample.  The 

answer to a question about a sample is called a statistic.  The essence of making inferences in 

social science research is finding ways to use the sample statistic to answer questions about 

population parameters (Thompson, 2006). 

 For a sample to answer questions about a population, certain things must be true about 

the sample.  The most important is that the sample must be randomly selected from the 

population (Efron & Tibshirani, 1993; Manly, 1994; Sprent, 1998).  If the sample was drawn 

from only one part of the population, it is likely that the sample statistic will be biased.  For 

example, if researchers were interested in the correlation between hair color and high school 

GPA, but only collected data from smart, upper-class, brown haired people, they would most 

likely infer that having brown hair leads to a higher high school GPA, which is false.  

Additionally, the sample must be of a large enough size to make generalizations about the 

population. 

 Because NHSST relies on finding the probability of the sample result in comparison to a 

broader population, assumptions have to be made about the broad population as well.  In the 

above brown-hair example, researchers looking at the variable of hair color were comparing their 

brown-haired sample to what they assume is true about the broad population of people with all 
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hair colors.  Compared to GPAs of everyone else, they inferred that brown hair led to higher 

GPAs.  For NHSST, researchers usually assume that the broad population has a normal 

distribution.  This assumption applied to GPA says most people have an average GPA, and the 

number of people with a certain GPA decreases as the GPA gets more extreme.  Employing this 

assumption may be problematic because it is never completely true that a population has a 

normal distribution, and frequently populations do not fit very well at all under the bell-curve 

(Lunneborg, 2000). 

 In NHSST the probability of the sample statistic in comparison to a broader null normal 

population, given the sample size, is computed as pcalculated, usually by a statistical software 

package.  More specifically, pcalculated is the probability that the sample statistic could have 

occurred randomly in a sample from a population exactly described by the null hypothesis (in 

other words having brown hair made no difference in GPA) with a certain size sample.  Pcalculated 

is evaluated against arbitrarily chosen probability cut-off points known as pcritical in order to 

determine statistical significance.  Because pcalculated is affected by sample size, significant results 

can always be obtained by increasing the sample size.  Therefore pcalculated is confounded as a 

method of evaluating results.  Also, as Thompson (2006) noted, the inference in NHSST is from 

the population to the sample, not vice versa.  Some mistakenly infer that a small pcalculated value 

means that the population parameter must be similar to their sample statistic.  They build further 

on this mistaken inference by thinking that if their statistic is similar to the population parameter, 

then other samples would likely have the same results, which is thinking that NHSST can 

evaluate replicability (Thompson, 1996).  NHSST cannot evaluate result replicability because 

NHSST cannot make inferences about the population from the sample (Thompson, 2006). 
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Bootstrapping 

 Bootstrapping is a viable solution to this problem of evaluating results for replicability.  

While the bootstrap still requires that original samples come from random sampling, it does not 

make any assumptions about normality that must be confirmed in the population.  The bootstrap 

creates new samples by resampling from the original sample to test result replicability.  Thus it is 

named in reference to pulling yourself out of the mud with your own bootstraps (Manly, 1994).   

The bootstrap resamples, with replacement, from the original data to create new samples.  

The new samples have the same number of scores (n) as the original sample, but differ in that 

some of the original scores may not be included in a given bootstrap sample, and some may 

appear multiple times.  This is the result of sampling with replacement.  To illustrate sampling 

with replacement, imagine a raffle with multiple prizes.  There are an equal number of prizes to 

the number of participants.  In sampling with replacement, after Jim’s name is chosen to win a 

new road bike, the hat-holder folds the name again and puts it back in the hat.  Jim’s name could 

be chosen again to win the i-pad, and again to win the sound system.  In fact, Jim’s name could 

be chosen every single time and he could go home with all the prizes, and his peers would not 

win anything.  Just like the raffle, the bootstrap has the same number of scores (prizes) as the 

original data set (participants), but almost certainly not all of the original scores will appear in a 

given bootstrap sample, and some will appear more than once because of sampling with 

replacement.  Random sampling with replacement is necessary to ensure that new samples are 

independent of the original sample, so they can be used to evaluate replicability (Efron & 

Tibshirani, 1993). 

 In bootstrapping, multiple bootstrap samples are created from the original data.  This is 

like creating many different scenarios of how many prizes each person won in the raffle analogy.  
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Jim could have won them all, or Jenny, Tom, and Martha could have each won varying numbers 

of prizes and everyone else none, etc.  The number of possible samples (scenarios) is 

overwhelming for anything other than an original data set with a small n.  The number of 

possibilities can be calculated by 
       

        
 , but in most cases only a fraction of these will be used 

for the bootstrap samples.  For example, if n=3 there will only be ten possible samples, and if 

n=4 there are 35 possible samples, but even as low as n=15 there are over two billion 

possibilities!  For the descriptive bootstrap, typically 1000-5000 bootstrap samples are created 

(Efron & Tibshirani, 1993).  This would be a lot of work by hand, which is why this method 

“would have been unthinkable 30 years ago” according to Diaconis and Efron in 1983 (p. 116).  

But computers make it easy to do bootstrapping. 

Each bootstrap sample has a sample statistic computed from its scores.  Whatever statistic 

is the statistic of interest, be it the sample mean, the sample median, or the sample coefficient of 

kurtosis, that statistic will be computed for each of the bootstrap samples.  Then the statistics 

from each of these 1000-5000 bootstrap samples will be compiled as a new distribution—a 

sampling distribution—as the scores in this distribution come from multiple samples, not from 

one sample.  This bootstrap sampling distribution is used to find a grand mean and the standard 

error.  The grand mean is the mean of all the statistics found from each bootstrap sample, and the 

standard deviation of the 1000-5000 statistics in the bootstrap sampling distribution is the 

standard error (Efron & Tibshirani, 1993). 

The standard error is also known as the sampling error because it predicts how much 

error is contained in the sample.  Because the standard error is the standard deviation of the 

sampling distribution, and given a sufficiently large sample n the sampling distribution of 

bootstrap samples will approach a normal distribution, it can be expected that approximately 68% 



Descriptive Bootstrap 

 
8 

of replicated studies will fall within one standard error of the grand mean (Thompson, 2006).  By 

adding and subtracting the standard error from the grand mean, the 68% interval can be 

estimated. 

Both the grand mean and standard error resulting from a bootstrap sampling distribution 

are estimates.  Remember that there are many possible new samples and we only used 1000-5000 

of them.  If different possible samples had been used, then the grand mean and the standard error 

would be different.  According to the Central Limit Theorem, if infinitely many bootstrapping 

samples went into the bootstrap sampling distribution, then the grand mean and standard error 

would get closer and closer to certain numbers, but that kind of precision is not necessary for 

determining result replicability (Efron & Tibshirani, 1993).  “If the mean estimate is like our 

sample estimate and the standard deviation of estimates from the resampling is small, then we 

have some indication that the result is stable over many different configurations of subjects” 

(Thompson, 1993, p. 373).  In other words, a grand mean estimate similar to the statistic from the 

original sample, and a small standard error estimate mean the results are likely replicable, 

because the statistic stayed relatively the same even though the bootstrap samples included many 

different variations and combinations of the original data. 

A Heuristic Example.  Let’s say there were three children in elementary school that you 

used for your sample.  You were interested to see if their grades on 12 tests in the past semester 

correlated with the amount of sleep they got the week preceding each test.  Child A had a 

correlation of r= .55, child B had a correlation of r= .69, and child C had a correlation of r= .91.  

The mean correlation for the three of them is r= .72.  Even though you only have data for these 

three children (which is really not big enough for any statistical purposes, only a heuristic 

example), you are curious to know whether your classmate Katy is likely to get a similar answer 
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to you, using three children from another school, because she wants to check answers with you 

before you turn in the assignment.  In other words, you have an original sample of three 

correlation scores for children and a sample statistic, in this case a mean, based on those original 

scores; you want to know how replicable your results are in school children at large. 

Table 1. Possible Bootstrap Samples for Example 

 

 

 

 

 

Figure 1. 50 Bootstrap Samples for Example 

 

It’s too late for you to collect more data now, because the other children didn’t keep track 

of their sleep, so you decide to use an internal test of replicability: the bootstrap.  Given that 

there are only three people in your sample, there are only ten possible combinations for a 

bootstrap sample.  They are listed in Table 1 along with their corresponding bootstrap sample 

means.  You use a computer to take 50 random samples with replacement from your original 
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0.55 0.60 0.64 0.67 0.69 0.72 0.76 0.79 0.84 0.91 

50 Bootstrap Samples 

 All possible bootstrap samples Bootstrap sample means 

1 0.91 0.91 0.91 0.91 

2 0.91 0.91 0.55 0.79 

3 0.55 0.55 0.91 0.67 

4 0.55 0.55 0.55 0.55 

5 0.55 0.55 0.69 0.60 

6 0.69 0.69 0.55 0.64 

7 0.69 0.69 0.69 0.69 

8 0.69 0.69 0.91 0.76 

9 0.91 0.91 0.69 0.84 

10 0.55 0.69 0.91 0.72 
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sample.  With only ten possible samples, most likely your bootstrap samples will be the same as 

some other bootstrap samples, though this would be unlikely to happen in a larger sample as 

discussed previously.  When the computer takes random samples, it is choosing one of the 

samples in the table and then choosing another sample in the table, possibly the same one.  It will 

generate a list of perhaps 50 samples, all from the original ten possibilities.  A graph of such a 

list might look like Figure 1.  This process might be understood more clearly by practicing 

running the spreadsheets found in Appendix A in Microsoft Excel with any three numbers.  For 

the 50 samples in Figure 1, the grand mean came out as r= .75, but the standard error came out 

to .76.  The grand mean is close to the sample statistic you found originally, but the standard 

error is so large in comparison (adding and subtracting it from the grand mean includes the 

whole spectrum of possible correlations) that there is very little chance your results would 

replicate. 

Discussion 

 As mentioned earlier, bootstrap results are estimates, so the useful answer when using 

bootstrapping is not a particular grand mean, but the interval around the grand mean.  A large 

interval compared to the range of the original scores means the results are unlikely to replicate.  

This could be due to a sample that is too small and makes spread out scores lend the instability of 

outliers to the results, or to a sample that is too variable, with too many outliers.  Good (2001, p. 

15) reminded us that “the bootstrap will not reproduce all the relevant characteristics of a 

population, only those present in the sample.”  That is to say, if the original sample is missing an 

important section of data, or biased, then the bootstrap replications will also be similarly biased.  

Thompson (1993) commented that because the bootstrap samples are all from the same sample, 

it gives an inflated estimate of replicability, but an inflated estimate is better than not having any 
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estimate at all.  Scientists must be wary of their samples when using bootstrapping; if the original 

sample is not representative of the population, then they may come away with a faulty estimate 

of replicability. 

 The usefulness of the bootstrap is that it can be used to estimate the accuracy of almost 

any statistic.  Efron and Tibshirani (1993) noted that prior to Efron developing the bootstrap, 

there was no easy way to estimate standard error for many statistics other than the mean.  With 

the help of the bootstrap and computers, it is easy to estimate the replicability of results. 
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